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Control of turbulence in oscillatory reaction-diffusion systems
through a combination of global and local feedback
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Global time-delay autosynchronization is known to control spatiotemporal turbulence in oscillatory reaction-
diffusion systems. Here, we investigate the complex Ginzburg-Landau equation in the regime of spatiotempo-
ral turbulence and study numerically how local or a combination of global and local time-delay autosynchro-
nization can be used to suppress turbulence by inducing uniform oscillations. Numerical simulations show that
while a purely local control is unsuitable to produce uniform oscillations, a mixed local and global control can
be efficient and also able to create other patterns such as standing waves, amplitude death, or traveling waves.
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I. INTRODUCTION

Nonlinear dissipative media, ubiquitously found among
biological, chemical, and physical systems, not only show
temporally periodic behavior or give rise to regular, spa-
tiotemporal patterns, but also display spatiotemporally disor-
dered, chaotic states [1]. In the context of reaction-diffusion
systems, in particular those chaotic states are of interest
which are created due to the impact of spatial coupling—i.e.,
those which are induced by diffusion. It is a challenge to
control such chaotic states and replace them by a simpler,
regular behavior. It has been successfully demonstrated that
reaction-diffusion systems can be controlled and engineered
by external (“forcing”) and internal (“feedback’) signals [2].

In particular, feeding back a global, time-delayed signal to
the system is a suitable way of controlling spatiotemporal
chaos. This method was proposed in 1992 by Pyragas for
dynamical systems described by ordinary differential equa-
tions and is called time-delay autosynchronization (TDAS)
[3]. The main idea of TDAS is to apply to the system a signal
F which is proportional to the difference of the actual state of
the system A(¢) at a given time ¢ with the state of the system
A(t—7) to the time t—7m—i.e., F(t,7)<A(t—7)—A(¢). Time-
delay autosynchronization has attracted much attention and
numerous studies have applied, validated, and extended the
original scheme (e.g., [4-8]). Its efficiency, in both numeric
and experimental studies, has been shown for a wide range
of systems (e.g., [9-13]). As the term autosynchronization
indicates, the control force guides the system toward a pre-
viously unstable state where the feedback term finally van-
ishes, constituting a kind of noninvasive control. However,
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the application of TDAS schemes does not necessarily lead
to states where the feedback term vanishes. Examples of this
kind of invasive feedback, in both experiment and theory,
have been observed [10,11] and will also be found here.
Aiming at controlling chaos in spatially-extended sys-
tems, two types of TDAS can be distinguished: First, global
control, where the quantity that is fed back to the system is
not space dependent—e.g., a global quantity or a spatial av-
erage of a space-dependent one. Second, local control, where
the feedback variable depends on the spatial coordinate.
There are many possibilities to realize local feedback
schemes, and there have been (often motivated by some par-
ticular system) described methods involving spatial filtering
[12] or spatially shifted domains [14,15]. In this paper, we
focus on a completely local scheme where A(x,?) is com-
pared to A(x,7—7) for all x. The majority of studies concen-
trate on global TDAS because it is the only possible realiza-
tion for non-spatially-extended systems and because its
implementation in real systems (even in those with space-
dependent dynamics) is often easier than for local TDAS.
Two particularly interesting reaction-diffusion systems
displaying spatiotemporal chaos and offering access for con-
trol are the photosensitive Belousov-Zhabotinsky reaction
and the CO oxidation reaction on Pt(110) [2]. Nevertheless,
our work is not performed in the setting of a particular
reaction-diffusion system, but uses as framework the com-
plex Ginzburg-Landau equation (CGLE), one of the most
well-studied models of pattern-forming systems [16]. In the
context of reaction-diffusion systems, the CGLE describes a
spatially-extended system close to a supercritical Hopf bifur-
cation [17,18]. There, the system is governed by uniform,
harmonic small-amplitude oscillations. However, in a certain
parameter regime (if the Benjamin-Feir criterion is met),
these oscillations are unstable and spatiotemporal chaos, also
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called turbulence, is observed. Two main types of spatiotem-
poral chaos can be distinguished: first, phase turbulence,
where the amplitude of the oscillations varies only a little
while the phases fluctuate and, second, defect or amplitude
turbulence, where both amplitude and phase fluctuate
strongly and the system dynamics is governed by defects,
where the amplitude drops to zero. These kinds of turbulence
are diffusion induced—i.e., cannot be found if diffusive, lo-
cal coupling in space is suppressed.

In spite of the widespread use of the CGLE, investigations
of TDAS in the context of the CGLE are relatively few. In
the following, we mention shortly some publications relevant
in this context: Bleich and Socolar studied the control of
spatiotemporal chaos by traveling waves for the CGLE
without global terms (but in the extended TDAS scheme
with multiple delay times) [19]. Harrington and Socolar
investigated the corresponding two-dimensional case [20].
Montgomery and Silber studied the CGLE with a local
TDAS scheme where also spatially shifted terms of the form
A(x—Ax,r) were involved, focusing on the stabilization of
traveling waves [15]. Recent work has investigated the dy-
namics of the same model in two space dimensions [21].
Based on previous work on the CGLE under the influence of
global feedback [22,23] and on TDAS in the CO oxidation
reaction [11], Beta and Mikhailov investigated global TDAS
in the CGLE, focusing on the question why for global TDAS
noninvasive stabilization of uniform oscillations is not pos-
sible [10]. Boccaletti and Bragard managed to control turbu-
lence in the CGLE by applying a control term involving a
desired target state, however without delay [24]. Ramana
Reddy et al. studied time-delay effects on coupled oscillators
[25]. To our knowledge, a direct comparison of local and
global feedback schemes for the CGLE has not been made.
However, Beck er al. [26] and then Unkelbach et al. [27]
compared different local and global control schemes for vari-
ous semiconductor models.

The present work is motivated by the interest to under-
stand the interplay of global and local TDAS in the standard
CGLE. The article is organized as follows: in Sec. II, we
introduce the CGLE with local and global control terms as
basic model. In Sec. III, we numerically compute control
diagrams and discuss the developing spatiotemporal solu-
tions. Finally, we close the article with a discussion of the
results (Sec. IV).

II. COMPLEX GINZBURG-LANDAU EQUATION
WITH FEEDBACK

Reaction-diffusion systems can display various types of
oscillatory dynamics. However, close to a supercritical Hopf
bifurcation, all such systems are described by the complex
Ginzburg-Landau equation [16-18], given by

dA=(1-iw)A-(1+ia)APA+(1+iBV?A, (1)

where A is the complex oscillation amplitude, w the linear
frequency parameter, « the nonlinear frequency parameter, 8
the linear dispersion coefficient, and V? the Laplacian opera-
tor.

For a one-dimensional system, the CGLE with time-delay
autosynchronization reads
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dA=(1-iw)A-(1+ia)APA+(1+iB)d A +F, (2a)

F=pe{m[A(x,t—7) - A(x,1)] + mg[g(t -9-AD]},
(2b)

where
— 1
A(t) = ZJLA(x,t)dx (3)

denotes the spatial average of A over a one-dimensional me-
dium of length L. The parameter u describes the feedback
strength, and & characterizes a phase shift between the feed-
back and the dynamics. The parameters m, and m; denote the
global and local feedback contributions, respectively. The
feedback term can be split into global and local parts

F=F;+F,=mue{A(x,t - 1) - A(x,1)]
+ mgueig[g(t -7 —A()]. 4)

If m;=0, the case of global TDAS, studied by Beta and
Mikhailov [10], is retrieved.

If we look for solutions of uniform oscillations A(r)
=py exp(—i€dt), we obtain for the feedback term

F=Au(m,+ my) (e — ¢fé) (5)

and for the amplitude and frequency of uniform oscillations
Po= \/] + Iu‘(mg + mZ)Xl s (63')

O=w+ a+M(mg+mz)(aX1—X2)’ (6b)

where x; , denote effective modulation factors, which can be
positive or negative and which arise from the feedback and
hence depend on ¢ and 7

X1 =cos(é+ Q1) —cos &, (7a)

X2 =sin(&+ Q1) —sin €. (7b)

Since x;, also depend on (), no explicit analytic solutions
for Egs. (6a) and (6b) can be given. In the absence of feed-
back, the period T, of uniform oscillations with amplitude
po=1 is Ty=2m/Q=27/(w+a). We assume that the
Benjamin-Feir criterion is 1+aB<0 fulfilled—i.e., that
these uniform oscillations are unstable.

III. NUMERICAL SIMULATIONS

In this section, we present the results of a numerical study
of Egs. (2a) and (2b). First, we give an overview of the
different patterns that are found for different TDAS schemes.
Then, we study more in detail the transitions from one pat-
tern to another for mixed TDAS.

For time integration, we use an explicit Euler scheme with
Ar=0.002 (Ar=0.001 for single simulations to assure conver-
gence). The Laplacian operator is discretized using a next-
neighbor representation. The system size of the one-
dimensional medium is L=128 with a spatial resolution of
Ax=0.32. We apply periodic boundary conditions, and
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FIG. 1. Main spatiotemporal
solutions for different feedback
magnitudes. Shown are space-
time diagrams in gray scale for
Re A (left panel) and |A| (right
panel) for a time interval of
t=50 in the asymptotic regime.

the initial conditions consist of either slightly perturbed uni-
form oscillations or developed spatiotemporal chaos. For
t&[-7,0], variables are zero. The overall simulation time for
a given parameter set is #=700 (usually the systems reach the
stable asymptotic state before /=200). To scan the parameter
space (7, u), 7 was changed in steps of 0.05 from 0.05 to 2.0
and u in steps of 0.05 from 0.05 to 1.0. We do not discuss
values of u>1 since then the amplitude of the control term
can become much larger than the amplitude of the uncon-
trolled limit cycle with amplitude of order 1. For the same
reason, we keep m;+m,=2 constant. The parameter £ is not
varied systematically from the value given below, although
we performed some rough parameter scans for &= and &
=1.25m, which, however, do not reveal qualitatively novel
behavior.

For the sake of comparison with Ref. [10], the parameters
in this section are chosen as a=-1.4, B=2, w=27-«
~7.68, and {=m/2. Therefore, the Benjamin-Feir criterion
1+aB<0 is met and we observe amplitude turbulence in the
absence of feedback.

A. Pattern overview

In this section, we first show examples of the most impor-
tant spatiotemporal patterns. Then, we plot the stability dia-
grams of these solutions in parameter space. We start with a
case of mixed global and local TDAS where the global parts
clearly dominate. Then, we increase the contribution of the
local TDAS term and finish with the case of purely local
TDAS. Finally, we show examples of interesting, but not so
common patterns.

Throughout the article, black
(white) denotes low (high) values
of the respective quantity (re-
scaled for each simulation). The
parameters are m;=1.4, m,=0.6,
and 7=0.3. The values of u are
©=0.05 (a), ©=0.23 (b), u=0.35
(c), and u=0.50 (d). The other
parameters are a=-1.4, =2, w
=27—a, and &=7/2.

In Fig. 1, we see the most important spatiotemporal pat-
terns that are observed for combined local and global TDAS.
For low feedback magnitude [Fig. 1(a)], amplitude turbu-
lence similar to the one found without feedback is observed.
The wave field fluctuates irregularly, and the modulus of the
amplitude |A| drops down to zero frequently [dark black ar-
eas in right panel of Fig. 1(a)]. For larger values of w, the
medium still shows irregular dynamics, however with obvi-
ous similarity to standing waves [Fig. 1(b)]. In analogy to the
phase turbulence for the standard CGLE, this pattern can be
denoted as phase-turbulent standing waves. In this example,
the amplitude oscillates in both space and time between the
values of 0.45 and 1, however without dropping to zero. The
change of a completely chaotic state known as amplitude
turbulence to an almost regular state is smooth. A detailed
characterization of the different turbulent states is beyond the
scope of this article.

For intermediate feedback strengths, the oscillations regu-
larize and standing waves form as spatial modulations of
uniform oscillations [Fig. 1(c)]. The modulus of the ampli-
tude |A| oscillates in space between 0.68 and 0.88 and re-
mains temporally constant. Finally, for large feedback values
[Fig. 1(d)] oscillations are uniform, with |[A|=0.75 in this
case.

To get an overview of the stable spatiotemporal solutions
of the system, we vary the delay time 7, the feedback mag-
nitude u, and the contributions of local and global feedback.
In Fig. 2, we show diagrams of the solutions in the parameter
space spanned by 7 and .

First, we discuss the case when local and global feedback
terms contribute with the same strength m;=m,=1 [Fig.
2(a)]. For very low u, no control is possible and spatiotem-
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FIG. 2. Diagram of spatiotemporal solutions. The parameters are
me=1, m=1 (a), my=0.6, m;=1.4 (b), my=0.4, m=1.6 (c), m,
=0.2, m;=1.8 (d), and m,=0, m;=2 (e). The other parameters are as
in Fig. 1. The numbers denote following regimes: spatiotemporal
chaos (1), standing waves (2), uniform oscillations (3), amplitude
death (4), and traveling waves (5). Part (a) is obtained from simu-
lations with two initial conditions, (b)—(e) only from initial condi-
tions representing developed chaos. For more information, see the
main text.

poral chaos [denoted as (1) throughout Fig. 2] is always ob-
served, independently of the value of 7. Also, for small 7, no
control is achieved since the difference between the actual
and time-delayed values (of either global or local A) is too
small to produce an efficient control signal.

For wide ranges of 7, chaos can be suppressed already for
relatively small feedback magnitudes. Then, standing waves
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appear, denoted as (2). As w is increased further, the ampli-
tude of the standing waves decreases until finally uniform
oscillations (3) are formed. In order to keep the diagram
simple, only perfectly regular standing waves are denoted as
(2); the phase-turbulent standing waves shown in Fig. 1(b)
belong still to the turbulent regime denoted as (1).

Figure 2(a) was created using runs with two different ini-
tial conditions: First, slightly perturbed uniform oscillations
and, second, developed chaos. The simulations show hyster-
esis between turbulence and uniform oscillations. In the
triangular-shaped regions for values of 7 close to multiple
values of the period of oscillations 7=nT,, n=1,2 [T,
=27/ Q=2m/(w+a)=1], either uniform oscillations or tur-
bulence can be found. Only in Fig. 2(a) do we display the
hysteresis, and Figs. 2(b)-2(e) are obtained with runs starting
with developed chaos as initial condition, in order to focus
on the issue of controlling turbulence.

The shape and location of the pattern regimes in param-
eter space of Fig. 2(a) are similar to the case without local
TDAS, presented in Fig. 9 of Ref. [10], where also hysteresis
and complex patterns were already reported. Because of this
similarity, we conclude that the effect of the local feedback
compared to the global one is small and that we have to go to
larger values of m; if we want to explore the specific impact
of local TDAS on the dynamics.

In Fig. 2(b) we show the parameter space with a stronger
contribution of local feedback, m;=1.4 and mg=0.6. Since
we want to avoid large amplitudes and therefore large con-
tributions from both feedback terms at the same time, we
decrease m, as we increase m;. Comparing with Fig. 2(a),
several features in Fig. 2(b) catch our attention. First, larger
values of w are needed in order to induce both standing
waves and uniform oscillations. In particular, turbulence is
already difficult to control for delay times close (and slightly
smaller than) multiples of the period of oscillations without
feedback. Second, the regions where standing waves are sta-
bilized are significantly larger than for smaller m; (and larger
mg). Third, for small values of 7=0.2 and large feedback
values u>0.85, amplitude death is observed. This means
that instead of uniform oscillations, a stationary state is sta-
bilized. Simulations not shown here show that amplitude
death can be induced for large global feedback magnitudes
(e.g., m=13) also for m;=0.

As the weight of the local feedback term is further in-
creased [m,=0.4 and m;=1.6, Fig. 2(c)], the stabilization of
standing waves and uniform oscillations becomes more and
more difficult and the limiting curves shift up. Still, the re-
gion where stable standing waves are found expands at the
cost of uniform oscillations. Also, the area in parameter
space where amplitude death occurs becomes larger.

Changing the parameters from m,=0.4 and m;=1.6 [Fig.
2(c)] to m,=0.2 and m;=1.8 [Fig. 2(d)], a relatively strong
shift of the curves in parameter space is observed. Within the
considered values of wu, stabilization of uniform oscillations
is now limited to a small region close to the area of ampli-
tude death. Although there are regions where standing waves
are stable, in a large part of the studied parameter space
actually no control of any regular pattern is observed and
turbulent states persist (at least during the simulation time
used). These turbulent states do not necessarily resemble am-
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plitude turbulence for u=0, since the feedback terms always
act on the dynamics.

Finally, the case of completely local TDAS (m,=0 and
m;=2) is presented in Fig. 2(e). The simulations show that
for completely local TDAS transients are longer, initial con-
ditions influence considerably the transient and asymptotic
dynamics, and hysteresis for the patterns is present. There-
fore, Fig. 2(e) can only roughly describe the behavior of the
system for vanishing global TDAS. The main results of our
simulations are that uniform oscillations are not found (for
the parameters used), the region of amplitude death is en-
larged, standing waves are present but mostly irregular, and
traveling waves appear.

For the values of w that we used (©=2), we do not find
stabilization of uniform oscillations. Compared to Fig. 2(c),
the region of amplitude death is enlarged and the curves
limiting the standing waves move toward larger values of u.
However, for vanishing global contribution the standing
waves that we have found seem to be mostly irregular. In
contrast to Figs. 2(a)-2(d) the regions denoted as (2) in Fig.
2(e) therefore also include irregular standing waves. Still,
single simulations not shown here demonstrate that regular
standing waves created for m,# (0 can remain stable with
respect to small perturbations for m,=0 (at least for times up
to 10%). Therefore, global TDAS is not essential to have
stable regular standing waves, although favorable.

As a novel feature, however, stable traveling waves are
found in a small region for 7= 1 and = 0.4, adjacent to the
region of standing waves. Two types of traveling waves are
found. For relatively small w and 7, traveling waves can be
perfectly harmonic and have a spatially constant amplitude
|A|. However, many traveling waves, and in particular those
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FIG. 3. Other spatiotemporal
solutions. Shown are space-time
diagrams in gray scale for Re A
(left panel) and |A| (right panel)
for a time interval of r=50. The
parameters are m,;=2.0, mg=0, T
=105, ©=0.30 (a), m=2.0, m,
=0, 7=1.05, ©u=0.45 (b), m;=1.6,
m,=04, 7=1.1, u=03 (c), and
m=2.0, my=0, 7=1.05, u=0.45
(d). The minimum (maximum)
values of |A| for (a) are 0.77
(0.77), for (b) 0.60 (1.08), for (c)
0.43 (1.10), and for (d) 0.66
(1.00). The other parameters are
as in Fig. 1.

with large w and 7, show a spatially periodic modulation in
|A|, similar to the amplitude modulation representing stand-
ing waves. Furthermore, traveling waves are also seen in a
irregular fashion—i.e., without a perfect symmetry—again
similar to irregular standing waves. In Fig. 3(a), we display a
traveling wave with constant |A| and in Fig. 3(b) a traveling
wave with amplitude modulation. Simulations not shown
here reveal that a traveling-wave state created for m,=0 can
survive—although distorted and irregular—small global
TDAS terms (m,=0.1 and m,=1.9 as an example).

In many simulations we have also seen more complex
patterns such as traveling localized structures, asymmetric
standing waves, or low-amplitude, long-wavelength patterns.
These patterns are sensitive to initial conditions and are often
found in small parameter regions between two distinct main
pattern regimes. Although we do not focus on these patterns,
we show as examples a localized traveling structure [Fig.
3(c)] and a state of a four localized structures [Fig. 3(d)].
Localized traveling structures have been found for many
simulations and can be created by perturbing locally a
standing-wave pattern. Figure 3(c) shows a simulation where
a localized structure, corresponding to a phase flip of 27 (or
kink), travels on the background of slightly irregular stand-
ing waves. The simulation presented in Fig. 3(d)—for the
same parameters as in Fig. 3(b), but with different initial
conditions—shows a medium where the waves in the upper
half travel in an opposite direction than the waves in the
lower half. Therefore, the localized structure in the center of
the medium can be interpreted as a pacemaker. Within the
upper half, a phase flip is found that represents a perturbation
of the wave field. At the upper boundary and close to the
lower boundary, two other localized structures are found that
represent wave sinks. Since we use periodic boundary con-
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FIG. 4. (Color online) Average and extremal values of |A| and
|F|. The parameters are m,=0.2, m;=1.8, and u=0.75. The other
parameters are as in Fig. 1. The main figure shows 7 from 0 to 0.3;
the inset shows 7 from O to 1. The black solid line shows |A|, the red
dotted line |F|. The bars denote the maximum and minimum values
of the magnitudes in a time interval #=50.

ditions, these structures are actually located close to each
other and can be regarded as a bound state of localized struc-
tures. Since in this simulation the localized structures move
slowly, the asymptotic state is not yet reached. Nevertheless,
we can speculate that in the absence of a phase flip, the
pacemaker could be stable.

B. Pattern transitions for mixed TDAS

If we want to understand how a stable pattern is replaced
by another one as we change parameters, it is useful to char-
acterize the patterns in terms of the minimum, average and
maximum values of the modulus of the oscillation amplitude
|A| and the feedback amplitude |F| during a given time inter-
val. The average value (and accordingly minimum and maxi-
mum values) are determined as an average over the system
size L=128 and over a time interval =50 in the asymptotic
regime.

As an example, we fix ©=0.75 and vary 7 from O to 1 for
the case m,=0.2 and m;=1.8 [Fig. 2(d)]. The minimum, av-
erage, and maximum values of the modulus of the oscillation
amplitude |A| and the feedback amplitude |F| for the different
patterns are shown in Fig. 4.

Since in the limit 7— 0 the feedback terms vanish, it is
not surprising that for small 7, |A| takes values close to 1 and
|F| takes values close to 0. As 7 increases, |A| decreases and
|F| increases until around 7=~0.09 the amplitudes are of the
same magnitude. Then, the magnitudes |A| and |F| basically
coincide (even if no spatial average is performed) and the
curve for |F| begins to coincide with the decreasing curve of
|A|. For 7=~0.12, both amplitudes vanish and amplitude
death is observed. Since |F|=0, control of the steady state is
noninvasive. Note that for values 7<<0.12, spatiotemporal
chaos is observed, reflected by the fact that the minimum
values of |A| and |F| are 0.

Amplitude death is found up to 7=0.22, when uniform
oscillations appear which can be clearly identified since
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FIG. 5. (Color online) Average and extremal values of local |F|
and global |F g| contributions of F. The parameters are as in Fig. 4.
The main figure shows 7 from 0 to 0.3; the inset shows 7 from 0 to
1. The black solid line shows |F,|, the red dotted line the local
contribution |F}|. Both curves have been rescaled with their magni-
tude parameter—i.e., |F)|/m; and |F g\/ my,. The bars denote the
maximum and minimum values of the magnitudes in a time interval
t=50.

maximum, average, and minimum values of |A| (and those of
|F|) coincide. For all 7>0.22, |F| never drops to zero and
usually is much larger than |A|. From uniform oscillations,
we enter the regime of standing waves if 7 increases further.
The standing-wave pattern develops softly from uniform
oscillations—i.e., starts with a small, then increasing ampli-
tude.

For this parameter set, the region where standing waves
are observed is large (from 7=~0.27 up to 7=0.7, as seen in
the inset of Fig. 4). The modulus of the amplitude increases
up to values |A|= 1.5 and also the amplitude of the standing-
wave pattern, reflected by the increase of maximum and
minimum values of |A|. In this regime, the feedback ampli-
tude |F| is very large, reaching |F|=4, and it decreases
slightly toward the upper end of the range of standing waves.
To be precise, for 7=0.35, the standing waves show in their
amplitude profile in space a period-2 behavior. As 7 in-
creases, the additional small peaks increase in magnitude un-
til the pattern starts to breathe around 7~0.5 where |F]|
reaches its maximum. Hence, for 0.5=7=0.7 breathing
standing waves are seen. Breathing becomes increasingly ir-
regular toward larger values of 7.

As 7 is increased further, 7=0.75, standing waves are
replaced by spatiotemporal chaos. Unlike in the regime for
small 7, here |F|>|A|, so hence the feedback always has a
large impact on the dynamics. The modulus of the amplitude
|A| decreases from values of about 1.5 to 0.75 and then starts
to rise again. For values 7= 1, standing waves are recovered.
No reappearance of amplitude death or uniform oscillations
are observed, although it seems possible that these patterns
may be found for u>1.

To clarify the relative influence of the different feedback
terms, we display in Fig. 5 the curves of the average values
of |F)| and |F,|. Since the strength of the two feedbacks is
different, m;=1.8 vs m,=0.2, |F)|>|F,| practically always
and we rescale the feedback amplitudes by the values of the
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FIG. 6. (Color online) Average and extremal values of |A| and
|F|. The parameters are m,=0.4, m;=1.6, and 7=0.35. The other
parameters are as in Fig. 1. The black solid line shows |A|, the red
dotted line |F|, and the blue dashed line |F|/u. The error bars de-
note the maximum and minimum values of the magnitudes in a time
interval 1=50.

feedback strength—i.e., |F)|/m; and |F,|/m,—to compare the
relative influence of the different contributions. We observe
that in the chaotic regime the local feedback contribution
dominates clearly. This is due to the fact that for chaotic
dynamics the spatial average of a variable yields small val-
ues while the local terms are large. In particular, as the am-
plitude of the chaotic oscillations decreases as the regime of
amplitude death is approached, the local contribution is
much larger than the global one, indicating that the local
feedback terms are important to observe amplitude death. In
the regime of uniform oscillations, the two feedback terms
give the same contribution, as can be expected since uniform
oscillations are by definition non-space-dependent. As the
onset of standing waves is crossed, the impact of the local
feedback again starts to dominate over the global feedback.
The contribution of the local feedback becomes increasingly
larger. Therefore, the presence of mixed local and global
contributions seems to favor standing-wave patterns. This is
in agreement with the fact that standing waves are found in
larger regions of parameter space as the local feedback term
enters more strongly. As we go to larger values of 7, where
again spatiotemporal chaos is observed, local contributions
remain stronger than global ones.

In Fig. 6, |A| and |F| are plotted for m,=0.4, m;=1.6, 7
=0.35, and varying u. For this set of parameters, we observe
three main regimes: spatiotemporal chaos, standing waves,
and uniform oscillations [cf. Fig. 2(c)]. In the limit w—0,
we recover the native amplitude turbulence present in the
case without feedback. As the feedback strength u increases,
also |F| increases and |A| decreases slightly. Then, at u
=0.20, the mean value of |A| jumps to a larger value. Since
the minimum values of |A| and |F| do not drop to zero, it
becomes clear that we have left the region of amplitude tur-
bulence. Actually, for the values ©=0.20 and w=0.25, the
simulations show irregular and oscillating standing-wave
patterns.

Since Focp [Egs. (2a) and (2b)], it is not surprising to
observe a nearly linear increase of |F| with u for the whole
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range of u. Therefore, it is interesting to display |F|/u to
reveal changes of |F| which are not due to the direct, linear
contribution of wu. This curve shows a strong shift at w
=0.2 as we go from spatiotemporal chaos to irregular stand-
ing waves. Although these standing waves are very irregular
and also represent a state of spatiotemporal chaos, there is a
clear difference between the regimes; e.g., the amplitude |A]
does not drop to zero anymore. Regular standing waves are
found between 0.3= . =0.5. The standing waves become
regular at a value for u where the modulus of the feedback
overcomes the modulus of the amplitude, |F|>|A|.

As u is increased within the regime of standing waves,
their amplitude decreases and approaches zero as the regime
of uniform oscillations are reached at u=0.55. All displayed
amplitudes increase constantly within this regime, and in
particular |F| reaches values larger than 4 for u>0.9. The
curve for |F|/u increases almost over the whole range of u
and thus reflects the fact that |F| increases stronger than
linearly.

IV. DISCUSSION

In this article, we have investigated the behavior of an
oscillatory medium described by the complex Ginzburg-
Landau equation influenced by local and global feedback
terms actuating through a TDAS scheme. Before discussing
our findings in light of other publications, we shortly sum-
marize the results.

In Figs. 2-6 we have presented numerical results for
TDAS feedback with local and global contributions. In Fig. 2
we have given an overview of the spatiotemporal solutions in
parameter space (7,u) for different combinations of local
and global TDAS terms. We have displayed several quanti-
ties (modulus of the total, local, and global feedback terms)
which characterize and reflect the changes between different
spatiotemporal patterns as 7 (Figs. 4 and 5) and u (Fig. 6) are
varied. Particularly, important patterns beside uniform oscil-
lations are standing waves, traveling waves, amplitude death,
and different kinds of spatiotemporal chaos, such as phase-
turbulent standing waves (Figs. 1 and 3). Also, 2m-phase
flips and pacemakers have been observed (Fig. 3).

If global TDAS is present, small local TDAS terms have
only little impact on the dynamics and pattern formation is
similar to the system studied by Beta and Mikhailov [10]. As
local TDAS control terms become stronger, the regions in
parameter space where uniform oscillations are found shrink
and the areas where chaos and standing waves predominate
expand. Standing-wave patterns are also observed in breath-
ing and slightly irregular variants, being the latter particu-
larly important for pure local TDAS. We conclude that local
feedback terms make the stabilization of uniform oscillations
difficult and favor the formation of standing waves instead.
Nevertheless, since also those regions become larger where
spatiotemporal chaos persists, we have to state that not only
the creation of spatially uniform, but also of spatially peri-
odic regular solutions becomes increasingly difficult as local
TDAS terms become more dominant. To observe stable, per-
fectly regular standing waves, a combination of local and
global TDAS terms seems favorable.
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We are interested in the control of turbulent states and
hence most simulations start with developed spatiotemporal
chaos. We observe hysteresis effects, such as between uni-
form oscillations and turbulence and standing waves and tur-
bulence, but since hysteresis between uniform oscillations
and turbulence was already reported for purely global TDAS
[10], we do not investigate this issue in detail.

Furthermore, we observe amplitude death. Typically, am-
plitude death has been studied for systems of coupled oscil-
lators where the oscillators have a distribution of natural fre-
quencies [28,29]. This dynamical phenomenon consists of
the coordinated decay of oscillations in a network of coupled
oscillators. Nevertheless, this pattern is more general and can
also be induced, e.g., by time delay for an array of identical
oscillators coupled globally [25]. Atay showed that distrib-
uted delays (rather than distributed frequencies) can also fa-
cilitate amplitude death for coupled oscillators [30]. Stabili-
zation of steady states by means of TDAS has been studied
by Hovel and Schéll [31] and it may be interesting to con-
nect their findings for a two-dimensional ordinary differen-
tial equation system with the results for coupled oscillators
and spatially-extended systems. Similar to the case of stand-
ing waves, also the region of amplitude death expands as the
local TDAS contribution increases, although in a lesser ex-
tent. Only one “death island” is found, for small 7, although
it seems possible that for large x4 and 7 more death islands
could be discovered. Although amplitude death is particu-
larly visible for local TDAS, we have observed amplitude
death also for mixed TDAS and global TDAS. Hence, al-
though not strictly necessary, local TDAS terms seem to fa-
vor the occurrence of amplitude death. Besides, amplitude
death is the only pattern stabilized noninvasively—i.e., for
vanishing feedback magnitude. All other patterns have non-
zero feedback magnitudes. For uniform oscillations and
purely global TDAS, this has been shown to be due to the
presence of other unstable modes which prevents the stabili-
zation of the native, unstable solution [10].

For purely local TDAS, we have observed the creation of
traveling waves. Such patterns were already reported and
investigated for (slightly different) local TDAS coupling
schemes before [15,19-21]. Although we have not studied
traveling waves in detail, we can state that such patterns have
not been observed to appear spontaneously if global TDAS
terms are present. Nevertheless, if we start from a traveling-
wave state and allow small global TDAS terms, traveling
waves persist (distorted and irregular, although perfectly rec-
ognizable) and decay only for considerable contributions of
global TDAS terms. However, we should have in mind that
for vanishing global contributions, transients become very
long, dependence on initial conditions is strong, and the
simulations presented here can only give us a rough view of
the system dynamics.
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The findings presented above may be interpreted in the
following way: First, global TDAS tries to stabilize uniform
oscillations, although standing waves are admitted stable so-
lutions in a small parameter region. Second, if local TDAS
prevents the formation of uniform oscillations, at least stand-
ing waves may be induced and stabilized. Indeed, standing
waves seem the preferred pattern for mixed TDAS schemes.
Third, for purely local TDAS, even standing waves become
unstable and traveling waves are observed. Hence, standing
waves can be interpreted as a “compromise pattern” where
traveling waves (favored by local TDAS) and uniform oscil-
lations (induced by global TDAS) compete.

We have also observed traveling localized patterns, iden-
tified as 27r-phase flips, and (at least as a transient) pacemak-
ers. Given the complexity of the system studied, it is not too
surprising to find also these spatiotemporal structures in this
systems. Actually, these patterns are known to occur already
for global coupling (e.g., [32,33]). Still, it demonstrates that
TDAS may represent another possibility to induce self-
organized pacemakers in reaction-diffusion systems, a topic
studied intensively during the last decades (see, e.g., Refs.
[34,35] and references therein). Since the pacemaker appears
as a localized pattern connecting different traveling wave
states, we can expect pacemakers especially for vanishing (or
small) contributions of the global TDAS term.

An explicit comparison of local and global control
schemes has been presented by Beck et al. [26] and
Unkelbach et al. [27] for different semiconductor models. In
particular, Unkelbach er al. [27] show that an exclusive local
control may be even superior than a global or combined
control in order to stabilize oscillations. Since their models
are quite different from the one studied here, our results do
not contradict their findings, although they make clear that
the efficiency of local versus global control may depend
strongly on the nature of the system under study.

To summarize, we can state that the presence of local
TDAS terms prevents the stabilization of uniform oscilla-
tions and favors the formation of other spatiotemporal pat-
terns, which for purely global TDAS would be either impos-
sible, unstable, or suppressed. To characterize these patterns,
such as standing waves, traveling waves, amplitude death,
phase flips, or pacemakers, in more detail for a combination
of local and global TDAS is certainly an interesting subject
for future investigations.
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